Accompanying dataset for the FSR 2015 submission:
Philipp Oettershagen, Thomas J. Stastny, Thomas A. Mantel, Amir S. Melzer, Konrad Rudin, Gabriel Agamennoni, Kostas Alexis, Roland Y. Siegwart; Long-Endurance Sensing and Mapping using a Hand-Launchable Solar-Powered UAV
Provided data
Topics in ROS bag
/cam0
)/cam1
)/ircam
)/px4/raw/gps
)/px4/raw/imu
)/px4/raw/mag
)/px4/position_world
)/px4/velocity_world
)/px4/orientation
)/px4/angular_rates
)Employed sensors
(1) IR camera images are stored in 14 bit/pixel. ROS tool for false coloring is available on github.com.
(2) Output of UAV state-estimator
Flight data
ROS bag | Flight path (KML) | |
---|---|---|
1h Segment | link | link |
Lawnmower pattern | link | link |
Rectangular spiral | link | link |
Camera calibration
Derived data
All topics in the namespace px4
are streamed from the UAV autopilot via an UART link and are time stamped on arrival on the embedded computer.
The /px4/orientation
topic gives the (estimated) orientation of the UAV in quaternions in ENU coordinates (using the ROS quaternion function tf::createQuaternionFromRPY(roll, -pitch, -yaw)
). Hence, the /px4/angular_rates
topic stores [roll_rate, -pitch_rate, -yaw_rate].
The (estimated) position in world coordinates (/px4/position_world
) is given as a vector of the form [latitude, longitude, altitude]. The same yields for the velocity (/px4/velocity_world
), which is the ground speed of the UAV given as a vector of the form [latitudinal speed, longitudinal speed, vertical speed].